当前位置:首 页 --> 方案设计
步进和伺服电机驱动选型应用速成
发布时间:2018/1/27 10:55:00 来源:永阜康科技
在线咨询:
给我发消息
张代明 3003290139
给我发消息
姚红霞 3003214837
给我发消息
李湘宁 2850985550
13713728695

本文主要针对设备制造商相关人员,如项目经理、机械设计、电气、软件运动控制工程师,讲述步进电机、伺服电机(本文都指永磁同步交流伺服电机)的作用,选用方法及周边配套设施的选配和主要应用经验。


1 步进和伺服电机的各自特点、优缺点介绍

1.1 两种电机在点位控制或调速应用的介绍


步进、伺服电机主要用于精确定位场合,也都可以用于调速应用。步进电机因效率低,一般不做为动力用;因存在一定的转矩脉动,不推荐用于转矩控制。伺服系统则可以做转矩控制,还可考虑取代变频驱动当动力用。


步进电机做调速应用时,控制指令通常用脉冲指令,靠改变脉冲频率来调速。相对变频器调速,有低速力矩大,易于控制启停,加减速时间短的优势(合适的电压及负载条件下,百毫秒级就能达到目标速度)。而且调速范围较宽,在负载惯量比匹配合理的条件下,通常不需要另加减速机构。缺点在于运行噪音相对大一些。


伺服电机做调速应用相对变频调速来说也有加减速时间短的优势,通常可做到几十个毫秒就达到预期速度,调速范围更宽。在做调速、转矩控制应用时,控制信号建议用模拟量电压信号。


1.2 步进和伺服的性能特点及对比:



2 电机选型及应用经验

2.1 电机驱动选型方法

设备制造商在电机选型时,可参考以下方法:

1)使用环境,需要的防护等级,运行噪音指标,温升指标等;

2)确定机械规格,负载、刚性等参数;

3)确认动作参数:转速、行程、加减速时间、周期、精度等;

4)计算负载惯量、选择电机惯量;

5)计算电机所需转矩;

6)选择最高转速能满足应用要求的电机。


设备制造商相关岗位人员可以按以下分工,来获取这些信息--


项目经理

详细了解设备生产出产品的工艺,应用环境,适用环温,精度,产能,机械结构,成本等参数,进而确定所需电机的噪音指标、防护等级、应用温湿度。依据工艺、产能、大致的结构,基本能得到每个电机的行程及每步动作分配的时间是多少,进而确定电机需求的转速范围,对应上述介绍精度及建议的速度范围数值,来确定选伺服还是步进的方向性。

 

机械设计人员  

在机械传动、结构等设计之前,应先对伺服或步进电机的型号规格做详细的了解,按照电机行业相关标准规格尺寸来设计,否则等设计好传动、结构后再来选电机,经常会遇到:安装空间不够,没有所需轴径、轴长的标准电机;没有所需的大力矩、合适惯量的电机等问题。影响进度,抬高成本。

 

备注  

常用的控制类电机(包含伺服、步进)转矩最大一般为50 NM (牛米)。雷赛惯量最大的步进电机型号为130HS45,惯量为:4.84*10-3(kg·m2)。步进电机轴径、法兰盘、端盖固定孔位尺寸,大部分都是按照英制习惯。伺服电机尺寸一般都按照公制习惯。


机械设计人员要先计算运动部件的转动惯量进而再计算需求力矩。





2.2 应用经验

1)电机与负载间合理装配联接。

2)需注意驱动、电机的散热。

3)选配驱动器,电源,合理设置电流,细分。

4)正确的电气连接,合理的电气装配工艺。

5)设计合理的运动曲线。

下表分别为设备制造商相关岗位人员如机械工程师、电气工程师、软件工程师提供一些参考

机械工程师参考

电气工程师参考





软件工程师参考


 


图1


驱动器控制信号接线图注释:

1)脉冲,方向信号端接线原理图;首先需满足驱动器的信号电压幅度条件。再考虑上位系统的信号输出类型,基本可分为:差分型、NPN型(漏、拉电流型)、PNP型(源、推电流型)

2)以较为常见的NPN型输出信号为例说明,紧紧抓住回路的概念:电流从信号电源的正端流向PUL+经内部电路后从PUL-端流出,再经过上位控制器脉冲输出口正端流向负端(NPN、PNP型脉冲输出口的正负端都可理解成单向导通开关),再从脉冲输出口的负端流回信号电源的负端,如图1形成完整的回路。

差分型输出较为特殊;通常任意一端拿出来既能产生推电流又能产生拉电流,所以不能把几路差分信号的“同名端”并联在一起形成共阳或共阴接法。无论上位输出的类型和驱动器信号接口是什么类型,只要能形成完整、可开关的回路就行。

3)另请注意当信号电压不是5V,需接电阻来限定电流时,方向与脉冲的回路中都应有各自的限流电阻而不要去共用一个电阻。

4)为保证驱动器、电机的正常工作,建议控制指令的电源和其它带有感性负载的电源完全隔离。若不能隔离,请务必为感性负载设置续流二极管。


运动曲线、参数合理规划设置:

软件工程师需要做的有:规划好每个轴的运动控制曲线,了解每个动作的时间、行程,合理的配置初速度、加速时间、最高速度、换向时间。以期望达到效率最高、效果最好。以梯形加减速为例,讲述如何规划设计一段运动曲线,见图2及其说明。


若您的上位控制器不是通用的控制卡、PLC类,请注意以下几点:

1)控制信号的高低电平时间是否满足驱动器说明书上的要求。驱动器的信号输入频率都有上限。步进通常为200KHZ,伺服通常为500KHZ,所谓的200K,500K都有一个前提:占空比在50%时。实际上200K也就是限定了高和低电平时间都不小于2.5微秒;500K时限定高和低电平时间都不小于1微秒。

2)控制信号的幅度:高电平需高于3.5V;低电平需低于0.5V。MCU的输出口通常不能直接带动驱动器,需要设置放大电路来放大电流驱动能力,使脉冲方向输出信号能达到典型应用电流10毫安。

3)控制信号的时序需满足说明书上的要求。通常驱动器会要求方向信号至少提前脉冲有效沿1-2微秒的时间。



图2

说明:                                

V1:起跳速度

V2:最高速度

t1:加速时间

t3-t2:减速时间,通常设计成和加速时间t1一致。


机座60以下的步进电机,建议起跳速度设置在1.5转/秒以下,达到推荐的最高应用转速20转/秒的加减速时间推荐30-150毫秒,电机端盖尺寸86MM及以上,建议初始速度在1转/秒以下,达到推荐的最高应用转速10转/秒的加减速时间推荐80-200毫秒。

400W及以下伺服建议初始速度3转/秒以下,达到推荐的最高应用转速50转/秒的加减速时间推荐15-200毫秒。

750W-2000W伺服建议初始速度2转/秒以下,达到30转/秒的加减速时间推荐40-300毫秒。

知道总行程S,和允许的时间T,就可以这样计算出V1,V2,t1

S=(V1+V2)*t1+V2*(T-2t1);为方便计算令V1=0;则V2*(T-t1)=S;知道S,T值和V2,t1的经验取值范围,确定V2和t1中的任一个,剩下的也就确定了。

 
    您可能对以下产品感兴趣  
产品型号 功能介绍 兼容型号 封装形式 工作电压 备注
AT8812C AT8812C为打印机和其它电机一体化应用提供一种双通道集成电机驱动方案。 DRV8812/DRV8813 HTSSOP-28 8~38V 具有4级电流调节的1A双极步进电机驱动IC
AT8810 AT8810为打印机和其它电机一体化应用提供一种双通道集 成电机驱动方案。 BD68610 HTSSOP-16 8~38V 舞台灯光专用步进电机驱动IC
HR4995 HR4995是一种便于使用的内部集成了译码器的微特步进电机驱动器。 A4985 QFN-24 8V-38V 内置转换器和过流保护的微特步进电机驱动芯片
HR9110 HR9110是应用于直流电机方案的单通道H桥驱动器芯片。 L9110 SOP-8 1.8V-6.8V 1.2A玩具单通道直流电机驱动IC
HR2125 HR2125是一种双通道、低导通压降的正反向电机驱动芯片,为玩具、打印机和其它电机一体化应用提供一种双通道电机驱动方案。 DFN-10 1.8V-6.8V 低压双通道H桥驱动器
AT8870 AT8870是一款刷式直流电机驱动器,适用于打印机、电器、 工业设备以及其他小型机器 DRV8870/A4950 SOP-8 6.5V-38V 3.6A单通道刷式直流电机驱动IC
AT8812 AT8812为打印机和其它电机一体化应用提供一种双通道集成电机驱动方案。AT8812有两路H桥驱动,最大输出38V 2A,可驱动两路刷式直流电机,或者一路双极步进电机,或者螺线管或者其它感性负载。 DRV8812 HSSOP-28 8V-38V
AT8313 AT8313提供三路可独立控制的半H桥驱动,每个半H桥可输出2.5A峰值电流或1.75A均方根(RMS)电流输出,可驱动一个三相直流无刷电机,也可被用于驱动螺线管或者其它负载。 DRV8313 QFN-36 8-38V
HR8826 HR8826是一种内置步进表的集成微步进电机驱动器,为打印机、扫描仪和其它自动化设备提供解决方案。其设计为能使双极步进电机以全、半、1/4、1/8、1/16、1/32步进模式工作。步进模式由逻辑输入MODEx选择。输出驱动能力达到38V和±3A。HR8826的衰减模式可编程。 DRV8825 TSSOP-28 8V-38V/3A 具有片上1/32微步进分度器的3A双极步进电机驱动IC
HR8828 HR8828是一种内置步进表的集成微步进电机驱动器,为打印机、扫描仪和其它自动化设备提供解决方案。其设计为能使双极步进电机以全、半、1/4、1/8、1/16、1/32步进模式工作。步进模式由逻辑输入MODEx选择。输出驱动能力达到38V和±3.5A。HR8828的衰减模式可编程。 TB6560 QFN-48/LQFP-48 8V-38V/3.5A 内置步进表的3.5A集成微步进电机驱动器
HR3992 HR3992是一种便于使用PWM来控制电流的双极微特步进电机驱动器, 输出驱动能力达到35V和±1.5A。内部固定关闭时间的PWM电流控制时序电路可以通过串行接口进行编程,使其工作在慢衰、快衰或混合衰减模式。 A3992 TSSOP-24 8V-35V/1.6A DMOS 全桥 PWM 微步进电机驱动芯片
HR4982 HR4982是一种便于使用的内部集成了译码器的微特步进电机驱动器。其设计为能使双极步进电机以全、半、1/32和1/128步进模式工作。步进模式由逻辑输入MSx选择。输出驱动能力达到35V和±2A。HR4982包含一个工作在慢衰或混合衰减模式的固定关闭时间的电流调节器。 A4982 TSSOP-28 8V-35V/2A 内置转换器和过流保护的微特步进电机驱动芯片
HR4988 HR4988是一种便于使用的内部集成了译码器的微特步进电机驱动器。其设计为能使双极步进电机以全、半、1/4、1/8、1/16、1/32、1/64和1/128步进模式工作。步进模式由逻辑输入MSx选择。输出驱动能力达到35V和±2A。HR4988包含一个工作在慢衰或混合衰减模式的固 定关闭时间的电流调节器。 A4988 TSSOP-28/QFN-28 8V-35V/2A 内置转换器和过流保护的微特步进电机驱动芯片
HR8833 HR8833为玩具、打印机和其它电机一体化应用提供一种双通道电机驱动方案。HR8833有两路H桥驱动,可以驱动两路刷式直流电机,或者一个双极步进电机,或者螺线管或者其它感性负载。 DRV8833 TSSOP-16 2.70V-12.8V 2A低电压双路刷式直流或单路双极步进PWM绕组电流调节/限制电机驱动器IC
HR5561 HR5561是应用于直流电机方案的单通道H桥驱动器芯片。 HR5561的H桥驱动部分采用低导通电阻的PMOS和NMOS功率管。低导 通电阻保证芯片低的功率损耗,使得芯片安全工作更长时间。此 外HR5561拥有低待机电流、低静态工作电流。这些性能使能HR5561 易用于玩具方案。 AT5561 SOP-8/DIP-8 1.8V-6.0V 玩具单通道直流电机驱动器
HR1084 HR1084是应用于直流电机方案的单通道H桥驱动器芯片。 HR1084的H桥驱动部分采用低导通电阻的PMOS和NMOS功率管。低导 通电阻保证芯片低的功率损耗,使得芯片安全工作更长时间。此 外HR1084拥有低待机电流、低静态工作电流。这些性能使能HR1084 易用于玩具方案。 DW1084 SOP-8/DIP-8 1.8V-6.0V/1A 玩具单通道低电压1A直流电机驱动IC
HR4985 HR4985是一种便于使用的内部集成了译码器的微步进电机驱动器。其设计为使双极步进电机能够以全、半、1/4和1/8步进操作。步进模式由逻辑输入MSx选择。输出驱动能力达到35V和±1A。HR4985包括一个能够控制慢或混合衰减模式的电流调节器,其截止时间固定。 A4985 QFN-24 8V-35V/1.0A 带转换器和过流保护的 DMOS 微步驱动器
HR3988 HR3988是一款四路DMOS全桥驱动芯片,能够驱动多达2个步进电机或4个直流电机。每个全桥输出额定值高达36V, 1.2 A。 A3988 TQFP-48 8V-35V/1.2A 四路DMOS全桥电机驱动芯片
HR3979 HR3979是一种新近开发出来、专门用于双极步进电机的微步进电机驱动集成电路,能驱动马达以全、1/2、1/4及1/16步进操作,其内部集成了步进和直接译码接口、正反转控制电路、双H桥驱动,单路输出额定值达到35V、±2.5A。 A3979 TSSOP-28 8V-35V/2.5A 带转换器的微步 DMOS 驱动器
HR3967 HR3967是一种新近开发出来、专门用于双极步进电机的微步进电机驱动集成电路,能以全、1/2、1/4及1/8微步细分驱动马达,输出额定值能达到30V、±750mA 。 A3967 SOP-24 8V-35V/750mA 内置转换器的微步进电机驱动芯片
 
深圳市永阜康科技有限公司 粤ICP备17113496号 服务热线:0755-82863877 手机:13242913995