当前位置:首 页 --> 方案设计
BLDC直流无刷电机FOC控制技术解决方案
发布时间:2018/1/24 14:12:00 来源:永阜康科技
在线咨询:
给我发消息
张代明 3003290139
给我发消息
姚红霞 3003214837
给我发消息
鄢先辉 2850985542
13713728695

从能耗角度来看,消费类电子产品和工业设备从传统的 AC 马达过渡到体积更小、更为高效的 BLDC 电机具有重大意义,但设计 BLDC 控制算法的复杂性阻止了工程师们实现这种过渡的积极性。

从手机中的小型振动马达到家用洗衣机和空调中使用的更复杂的马达,马达已成为消费领域中的日常装置。马达同样也是工业领域中的一个重要组成部分,在很多应用中广泛运用,如驱动风扇、泵等各种机械设备。这些马达的能量消耗是非常巨大的:研究表明,仅在中国,马达所消耗的能源占工业总能耗的 60% 至 70%,其中风扇和泵所消耗的能源占中国整体功耗的近四分之一。尽管这个数字在其他国家可能没那么高,但降低电子系统中的马达能耗已在全球成为必须优先考虑的议题。

一个多世纪以来,传统的交流 (AC) 马达已被广泛使用。交流马达是设计最简单的感应马达,但他们却造成了大量能源的浪费。这是因为交流马达只输出恒定速度,不能随工作条件的变化进行自适应。现在已有一些调节交流马达速度的简单方法(例如,可以提供三种速度选择的标准家用风扇),但这些方法的应用范围有限,而且难以转移到更为复杂的系统。

但对于直流 (DC) 马达,可以通过改变电压来改变和控制速度,从而根据应用需要来加快或减慢工作速度。这可以节省大量的能源,因为马达可以根据需要的条件来运行。在一般情况下,DC 马达比 AC 马达更有效率。

图一 : 用更小、更高效的 BLDC 马达代替传统的 AC 马达可以节约能源并降低成本,但 BLDC 控制所需的演算法非常复杂,以至於很多设计师都不愿进行转换。为 BLDC 马达控制而专门设计的专用 IC 可以令这项工作变得更为容易。

BLDC马达的优势

DC 马达可被设计为有刷马达或无刷马达。无刷直流 (BLDC) 马达通常是大多数应用的最佳选择。这种马达更可靠、更安静,产生的电磁辐射更少,并且更为安全,因为它们消除了由于电刷和换向器而产生的火花。BLDC 马达体积更小、效率更高,这意味着它们需要使用更少的能源。

BLDC 马达的运行温度低于 AC 马达,更为高效的设计使得其内部零件产生的热量更少。 这不仅能够增加轴承系统的使用寿命,还能够提高电气系统及风机的可靠性。

此外,BLDC 马达的功率密度也高于 AC 马达。对于相同的能量输出,DC 马达的体积和重量都小于 AC 马达。这使得 BLDC 马达的运输和安装更为容易且成本更低。

不过,使用 BLDC 马达的麻烦之处在于系统需要更复杂的电子设备来管理马达。马达控制一向不是电子工程师的重点领域,许多开发人员因缺乏经验或专业知识而无法轻松设计出必要的控制电路。BLDC 马达的研发需要额外的时间和技术支持,这意味着需要更长的开发周期及更高的系统成本,这就使得系统制造商更难以从熟悉的 AC 马达过渡到 BLDC 马达。

然而,对于越来越多的制造商来说,使用 BLDC 马达产生的复杂性并不会随着市场对更节能家电需求的增加而有所抵销。 2011 年 IMS 调查显示,中国大约 40% 的空调采用了变频控制 BLDC 马达。这种情况呈上升趋势,并且,在某种程度上,得助于因专为 BLDC 马达控制而设计的专用电路。

无传感器磁场导向控制技术

用于控制 BLDC 马达的传统方法采用的是驱动定子的六步过程,由此在产生的转矩上产生脉动。所谓的「六步方波」过程采用霍尔效应传感器来检测 BLDC 马达中的永磁位置。

六步过程相对简单,但容易产生噪音,并且对于需要根据条件的变化快速改变马达转速的更先进应用来说,其响应能力不足。以洗衣机为例,负载根据所选择的洗涤周期有所不同,并且在整个周期过程中也有所变化。在滚筒式洗衣机中,这种情况更加复杂,当衣物旋转到滚筒顶端时,重力会对马达产生影响。

在这些情况下,需要一个更先进的算法。磁场导向控制 (FOC) 能够提供速度快速变化所需的响应时间,已成为当今更先进节能家电的马达控制方法选择。

有多种方式可以实现 FOC。其中一个方法是使用传感器(与六步方波过程方法类似),但传感器较难以安装和维护,尤其是在应用涉及复杂线束或马达暴露在水中时。实现 FOC 更简单、更具成本效益的方法是取消传感器。无传感器 FOC 涉及由永久磁铁在转子上产生的恒定转子磁场,是一种非常有效的控制方法。

FOC 方法可以让马达在全转速范围内顺利运转,在零速时产生最大转矩,并能够快速加速和减速。事实上,由于马达的尺寸小、成本和功耗低,无传感器 FOC 的诸多优势使其在对性能要求较低的应用中成为广受欢迎的选择。

特定应用解决方案

即便如此,实现无传感器 FOC 需要复杂的数学算法,这对于普通设计人员来说可能并不熟悉。在过去,设计师们通常依赖于复杂的数字讯号处理 (DSP) 芯片来实现无传感器 FOC。以英飞凌的FCM8531为例,它为工程师们提供了专门的解决方案,使得开发无传感器 FOC 应用变得更为容易。

针对采用无传感器磁场导向控制 (FOC) 的系统,快捷半导体提供了一种配置有并行核心处理器的特定应用控制装置 FCM8531。 如图 1 所示,FCM8531 由一个先进马达控制器 (AMC) 处理器和一个 8 位兼容 80C51 的 MCU 处理器组成。

图二 : FOC马达控制 IC功能方块图(以FCM8531为例)

AMC 是一个专为马达控制而设计的核心处理器。它整合了一个可配置的处理核心处理器和外围电路,执行无传感器 FOC 马达控制。系统控制、用户接口、通信接口和输入/输出接口均可通过嵌入式 80C51 MCU来针对不同的马达应用进行程序设计。

FCM8531 的并行核心处理器的优势是,两个处理器可以独立工作,相互补充。 AMC 处理专门用于马达控制的任务,如马达控制算法、PWM 控制、电流检测、实时过电流保护和马达角度运算。 嵌入式 MCU 通过通讯接口向 AMC 提供马达控制命令,来执行马达控制活动。 复杂的马达控制算法在 AMC 中执行,因此,这种方法可减少软件负担,并简化控制系统程序。

我们为用户提供可用于开发软件、编译程序及进行实时调试的马达控制开发系统 (MCDS) IDE 和 MCDS 编程工具。设计人员可从函式库中选择适合的函式,快速编译程控功能和通讯协议,从而实现以前只能在高层次 DSP 上实现的效果。

结论

从能耗角度来看,消费类电子产品和工业设备从传统的 AC 马达过渡到体积更小、更为高效的 BLDC 马达具有重大意义,但设计 BLDC 控制算法的复杂性阻止了工程师们实现这种过渡的积极性。为 BLDC 马达控制而专门设计的专用 IC,如快捷半导体的 FCM8531,使开发人员更易于采用 BLDC 马达,有助于加快向更高效模式的过渡与转换。

 
    您可能对以下产品感兴趣  
产品型号 功能介绍 兼容型号 封装形式 工作电压 备注
ACM6755 ACM6754是一款三相无刷直流电机驱动芯片,内部集成无感三相无刷电机驱动算法、相电流检测电流电路、栅极驱动电路以及功率MOS管. 支持最大4.8A的相电流. ACM6754/55 的高集成度以及精简外围特别适用于高功率密度、小尺寸、静音要求高的三相无刷电机驱动器。 ACM6763 QFN-28 4.5V-28V 三相180˚ 正弦/方波, 无感或者外置霍尔的直流无刷电机驱动器, 180˚ 正弦/方波/开窗正炫可选
ACM6763 4.5V-32V、5A三相无刷无感驱动、180˚正弦,集成驱动算法+预驱+MOS ACM6755 QFN-28 4.5V-32V 三相180˚ 正弦, 无感或单霍尔,车规级无刷电机驱动
ACM6754 ACM6754是一款全集成、无需外置传感器的三相无刷电机驱动IC。内部集成电机控制算法和电流/ 电压检测,能够基于无刷电机旋转过程中的反电动势控制电机静音/ 高效旋转。 ACM6753 QFN-24 5V-28V 三相180˚ 正弦/方波, 无感或者外置霍尔的直流无刷电机驱动器
ACM6252 ACM6252是一款外置霍尔传感器的单相无刷电机驱动IC。内部集成电机控制算法和电流检测,能够基于霍尔信号控制单相无刷电机静音/ 高效旋转。内部集成4颗小于500mΩ的MOS保证1.2A电流输出的情况下优异的热性能。 APX9230/M8121 TSSOP-16/DFN-10 3.3V-18V 正弦波或方波驱动,外置霍尔的12V/1.2A单相无刷直流电机驱动器
ACM6753 18V、3A三相无刷无感驱动、180˚正弦,集成驱动算法+预驱+MOS ACM6754 QFN-24 5V-18V 5-18V无感三相无刷电机驱动器
AT8812C AT8812C为打印机和其它电机一体化应用提供一种双通道集成电机驱动方案。 DRV8812/DRV8813 HTSSOP-28 8~38V 具有4级电流调节的1A双极步进电机驱动IC
AT8810 AT8810为打印机和其它电机一体化应用提供一种双通道集 成电机驱动方案。 BD68610 HTSSOP-16 8~38V 舞台灯光专用步进电机驱动IC
HR4995 HR4995是一种便于使用的内部集成了译码器的微特步进电机驱动器。 A4985 QFN-24 8V-38V 内置转换器和过流保护的微特步进电机驱动芯片
HR9110 HR9110是应用于直流电机方案的单通道H桥驱动器芯片。 L9110 SOP-8 1.8V-6.8V 1.2A玩具单通道直流电机驱动IC
HR2125 HR2125是一种双通道、低导通压降的正反向电机驱动芯片,为玩具、打印机和其它电机一体化应用提供一种双通道电机驱动方案。 DFN-10 1.8V-6.8V 低压双通道H桥驱动器
AT8870 AT8870是一款刷式直流电机驱动器,适用于打印机、电器、 工业设备以及其他小型机器 DRV8870/A4950 SOP-8 6.5V-38V 3.6A单通道刷式直流电机驱动IC
AT8812 AT8812为打印机和其它电机一体化应用提供一种双通道集成电机驱动方案。AT8812有两路H桥驱动,最大输出38V 2A,可驱动两路刷式直流电机,或者一路双极步进电机,或者螺线管或者其它感性负载。 DRV8812 HSSOP-28 8V-38V
AT8313 AT8313提供三路可独立控制的半H桥驱动,每个半H桥可输出2.5A峰值电流或1.75A均方根(RMS)电流输出,可驱动一个三相直流无刷电机,也可被用于驱动螺线管或者其它负载。 DRV8313 QFN-36 8-38V 2.5A三路半桥集成驱动芯片
HR8826 HR8826是一种内置步进表的集成微步进电机驱动器,为打印机、扫描仪和其它自动化设备提供解决方案。其设计为能使双极步进电机以全、半、1/4、1/8、1/16、1/32步进模式工作。步进模式由逻辑输入MODEx选择。输出驱动能力达到38V和±3A。HR8826的衰减模式可编程。 DRV8825 TSSOP-28 8V-38V/3A 具有片上1/32微步进分度器的3A双极步进电机驱动IC
HR8828 HR8828是一种内置步进表的集成微步进电机驱动器,为打印机、扫描仪和其它自动化设备提供解决方案。其设计为能使双极步进电机以全、半、1/4、1/8、1/16、1/32步进模式工作。步进模式由逻辑输入MODEx选择。输出驱动能力达到38V和±3.5A。HR8828的衰减模式可编程。 TB6560 QFN-48/LQFP-48 8V-38V/3.5A 内置步进表的3.5A集成微步进电机驱动器
HR3992 HR3992是一种便于使用PWM来控制电流的双极微特步进电机驱动器, 输出驱动能力达到35V和±1.5A。内部固定关闭时间的PWM电流控制时序电路可以通过串行接口进行编程,使其工作在慢衰、快衰或混合衰减模式。 A3992 TSSOP-24 8V-35V/1.6A DMOS 全桥 PWM 微步进电机驱动芯片
HR4982 HR4982是一种便于使用的内部集成了译码器的微特步进电机驱动器。其设计为能使双极步进电机以全、半、1/32和1/128步进模式工作。步进模式由逻辑输入MSx选择。输出驱动能力达到35V和±2A。HR4982包含一个工作在慢衰或混合衰减模式的固定关闭时间的电流调节器。 A4982 TSSOP-28 8V-35V/2A 内置转换器和过流保护的微特步进电机驱动芯片
HR4988 HR4988是一种便于使用的内部集成了译码器的微特步进电机驱动器。其设计为能使双极步进电机以全、半、1/4、1/8、1/16、1/32、1/64和1/128步进模式工作。步进模式由逻辑输入MSx选择。输出驱动能力达到35V和±2A。HR4988包含一个工作在慢衰或混合衰减模式的固 定关闭时间的电流调节器。 A4988 TSSOP-28/QFN-28 8V-35V/2A 内置转换器和过流保护的微特步进电机驱动芯片
HR8833 HR8833为玩具、打印机和其它电机一体化应用提供一种双通道电机驱动方案。HR8833有两路H桥驱动,可以驱动两路刷式直流电机,或者一个双极步进电机,或者螺线管或者其它感性负载。 DRV8833 TSSOP-16 2.70V-12.8V 2A低电压双路刷式直流或单路双极步进PWM绕组电流调节/限制电机驱动器IC
HR5561 HR5561是应用于直流电机方案的单通道H桥驱动器芯片。 HR5561的H桥驱动部分采用低导通电阻的PMOS和NMOS功率管。低导 通电阻保证芯片低的功率损耗,使得芯片安全工作更长时间。此 外HR5561拥有低待机电流、低静态工作电流。这些性能使能HR5561 易用于玩具方案。 AT5561 SOP-8/DIP-8 1.8V-6.0V 玩具单通道直流电机驱动器
 
深圳市永阜康科技有限公司 粤ICP备17113496号 服务热线:0755-82863877 手机:13242913995