当前位置:首 页 --> 技术分享
探讨功率路径实现方案的折衷权衡(上)
发布时间:2012/5/4 15:09:00 来源:
在线咨询:
给我发消息
李湘宁 2850985550
给我发消息
张代明 3003290139
给我发消息
姚红霞 3003214837
13713728695

为满足诸多系统需求,在系统设计人员和充电器IC供货商中正掀起一 股充电器IC的热潮。本文提到的充电器IC是指智能手机/平板电脑等设备中的充电器IC,用于把AC/DC适配器 (或USB) 的功率转换为适合于电池充电的形式。最近,充电器IC的受关注焦点是高效开关式充电器日益流行,并迅速取代基于线性或脉冲方法的现有充电器解决方案。至于 其原因,已有太多文章讨论过了。 

本文主要介绍充电器IC的功率路径特性。功率路径常常以不同的名称出现,另外也有多种实现方案。系统设计人员因此可能困扰于如何在不同方案之间进行权衡比较。功率路径的大致定义是能够提供以下一种或多种的优势: 

1. 系统与电池之间功率共享

2. 为无电池的系统供电

3. 为电池完全耗尽的系统供电 

图1的模块示意图是一个使用“理想”二极管的功率路径的典型实现方案。电流由箭头标识,可看出“理想”二极管 (不论是内部还是外部) 有助于电流的适当控制。 


图1. 采用“理想二极管”的功率路径实现方案 

这个实现方案虽然能够满足功率路径的标准,但实际上二极管不可能是真正“理想”的。例如,一块这样的 IC 的内部二极管实际上是一个电阻值一般为 180m? 的 PMOS,这意味着电池与系统负载之间始终存在一个 180m? 的耗能串联组件,其在电池大电流耗电 (比如 GSM 脉冲) 期间会产生相当可观的额外功耗。采用并联 PMOS 开关可以减小这个阻抗值,但同时也会增加解决方案的尺寸和成本。 

图2的实现方案不同于图1所示的方案。图2中的电路虽然表面上看来似乎没有功率路径功能性,但事实上它几乎能够满足所有的需求。另外,它还有一大好处,即系统负载和电池之间没有耗能串联组件。 


图2. FAN5400模块示意图

系统与电池功率共享 

系统与电池间的功率共享,意味着在输入功率不足以同时为系统供电和电池充电的情况下,功率可被控制或优先供给系统。 

FAN5400的典型配置如图3所示,其中,系统与电池并联连接。这种配置的功率控制方式类似于功率路径,有时会让人感到混淆,故下面给出了基于真实电池容量和输入电源数目的实际情况。 

 


图3. 典型应用电路,系统与电池并联 

实例1:1500mAh 电池 (电池的1C最大充电电流能力 为1500mA),输入电源为 5V/ 500mA 的USB 2.0

情况A) 在 3.6V和系统负载400mA接通的情况下,部分充电的电池。 

在系统负载接通之前,充电器已经处于CC模式。由于输入电源为5V 500mA,电池电压为3.6V,故大约有632mA的电流可用于电池充电。这个数值是考虑到充电器转换效率以及降低电压时获得的输出电流倍增因子而计算出的。 

 


(1) 

由本例中的这些数值,可得5V/3.6V?500mA?91%=632mA。从图4中可发现 91%效率数据点。 


图4. FAN5400 的转换效率与电池电压及VBUS电压的关系

当系统负载接通时,400mA的电流转向系统,只剩下232mA用于电池充电。这就相当于功率控制(power steering);对于充电器来说,系统的优先级高于电池。在系统负载关断时,全部的 632mA 电流再一次流向电池。如图3所示,FAN5400 的优点在于系统和负载之间没有耗能串联组件。

情况B) 在 3.6V和系统负载 2000mA接通的情况下,部分充电的电池。 

在系统负载接通之前,与情况A类似,充电器已经处于CC 模式下,并把所有输入功率用于632mA 的电池充电。当系统负载接通时,632mA的电流转向系统,余下的 1368mA 负载电流由电池提供。 

这相当于功率控制;对于充电器来说,系统的优先级高于电池。在系统负载关断时,全部的632mA电流再一次流向电池。同样的,图3所示电路具有一个优点,即在系统和负载之间无耗能组件。 

情况C) 在 4.2V和系统负载 400mA 接通的情况下,完全充电的电池。 

在系统负载接通之前,充电器是关断的。当负载接通时,所有系统功率首先来自于电池。一旦VBAT < VOREG - VRCH,充电器便会启动。VRCH 是再充电阈值,为120mV。由于输入电源为 5V 500mA,充电器能提供的最大可用电流为 5V/4V?500mA?92%=575mA (这里假设电池电压为4V)。充电器启动时,充电器的充电电流应该为 575mA。不过,由于系统负载仍然存在,实际上只有 575mA-400mA=175mA 流入电池。 

这相当于功率控制;对于充电器来说,系统的优先级高于电池。在系统负载关断时,全部的 575mA电流流向电池,直到电池进入CV模式,这时,充电电流开始减小。同样的,图3所示电路具有一个优点,即在系统和负载之间无耗能组件。 

情况D) 在 4.2V和系统负载 2000mA接通的情况下,完全充电的电池。 

在系统负载接通之前,充电器是关断的。当负载接通时,功率首先来自于电池,而电池充电器几乎立即启动,并进入CC模式。这是因为锂离子电池一般都有一个150m??的输出阻抗,这个阻抗几乎立刻使 VBAT < VOREG - VRCH。 类似于情况 C,充电器试图以 575mA 的电流为电池充电 (实际上会稍高于 575mA,因为这种情况中电池电压比情况 C 的低,且倍增因子略高。不过,由于这是演示实验,所以可以忽略不考虑)。充电器试图充电,但由于系统负载为2000mA,575mA 的电流流向负载,剩余1425mA的系统负载电流由电池提供。 

这相当于功率控制;对于充电器来说,系统的优先级高于电池。在系统负载关断时,全部的575mA 电流流向电池,直到电池进入 CV 模式,这时,充电电流开始减小。同样的,图3所示电路具有一个优点,即在系统和负载之间无功耗组件。

 
    您可能对以下产品感兴趣  
产品型号 功能介绍 兼容型号 封装形式 工作电压 备注
 
深圳市永阜康科技有限公司 粤ICP备17113496号 服务热线:0755-82863877 手机:13242913995